American University of Beirut Department of Electrical and Computer Engineering

EECE 440 Signals and Systems

Homework 4 - Solution

Problem 1

Signal at b
$b(t)=m_{1}(t)+2 m_{2}(t) \cos (10,000 t)$

Signal at c
$c(t)=2 m_{1}(t) \cos (20,000 t)+2 m_{2}(t) \cos (10,000 t)+2 m_{2}(t) \cos (30,000 t)$
$C(t)$ is a band-pass signal that rum from $9500 \mathrm{rad} / \mathrm{s}$ to $30500 \mathrm{rad} / \mathrm{s}$. Therefore, its bandwidth is 21000 rad/s.

Problem 2

$\mathrm{Y}(\mathrm{t})$ is a low pass signal of bandwidth $12 \mathrm{rad} / \mathrm{s}$.

Problem 3

The signal at the input of the filter is:

$$
x(t)=\frac{1}{2} \operatorname{rect}\left(\frac{t}{T}\right) \cos \omega_{0} t+\frac{1}{2} \operatorname{rect}\left(\frac{t}{T}\right) \cos \left(3 \omega_{0} t\right)
$$

The signal at the output of the filter is:
$g(t)=\frac{1}{2} \operatorname{rect}\left(\frac{t}{T}\right) \cos \omega_{0} t=\frac{1}{2} f(t)$

Problem 4

$|H(\omega)|=\frac{\omega}{\sqrt{1+\omega^{2}}}$
Plotting $|H(\omega)|$ vs ω, we can easily conclude that the filter is a high-pass filter

Problem 5

At the input of the filter
$S(\omega)=12 \pi[\delta(\omega-160)+\delta(\omega+160)]+20 \pi[\delta(\omega-220)+\delta(\omega+220)]$
At the output of the filter
$G(\omega)=20 \pi[\delta(\omega-220)+\delta(\omega+220)]$
$\mathrm{g}(\mathrm{t})=20 \cos (220 \mathrm{t}$
$\mathrm{P}_{\mathrm{g}}=\frac{(20)^{2}}{2}=200 \mathrm{Watts}$

Problem 6

From your notes
$g(t)=f(t) \cos \left(\omega_{0} t\right)+\hat{f}(t) \sin \left(\omega_{0} t\right)$

Problem 7

The sinusoidal signal has a frequency of 1 Hz or a period of 1 s . The maximum allowable time between intervals should be $\mathrm{T}=\frac{1}{2 \mathrm{~B}}=\frac{1}{2} \mathrm{~s}$.

Problem 8

Discussed in class

Problem 9

$$
\begin{aligned}
\mathrm{s}(\mathrm{t})= & 10 \cos (2000 \pi \mathrm{t})+2.5 \cos (2200 \pi \mathrm{t})+2.5 \cos (1800 \pi \mathrm{t})+2.5 \cos (2400 \pi \mathrm{t}) \\
& +2.5 \cos (1600 \pi \mathrm{t})
\end{aligned}
$$

b. Total power $=\frac{(10)^{2}}{2}+\frac{(2.5)^{2}}{2}+\frac{(2.5)^{2}}{2}+\frac{(2.5)^{2}}{2}+\frac{(2.5)^{2}}{2}$

$$
=50+2(6.25)=62.5 \mathrm{Watts}
$$

c. The total sideband power $=$ total power - Carrier power $=62.5-50$

$$
=12.5 \text { Watts }
$$

d. Modulation index $=\mu=\frac{A_{\text {max }}-A_{\text {min }}}{A_{\text {max }}+A_{\text {min }}}$

Using MATLAB: $\mathrm{A}_{\max }=1$, and $\mathrm{A}_{\text {min }}=-0.5$
Therefore, $\mu=0.64$

Problem 10

a. Carrier Power $=P_{c}=\frac{A_{c}^{2}}{2}=50$ watts, implies that $A_{c}=10$ Volts
b. $\omega_{\mathrm{c}}=2 \pi \times 10^{6} \mathrm{rad} / \mathrm{s}$
c. $\mu=\mathrm{a}_{\mathrm{m}} \mathrm{k}_{\mathrm{a}}=0.8$
d. $\omega_{\mathrm{m}}=2 \pi \times 510^{3} \mathrm{rad} / \mathrm{s}$
$s(t)=10[1+0.8 \cos (10,000 \pi t] \cos (2,000,000 \pi t)$

Problem 11

a. Modulation index $=\mu=\frac{A_{\text {max }}-A_{\text {min }}}{A_{\text {max }}+A_{\text {min }}}$

Using Plot: $\mathrm{A}_{\max }=12$, and $\mathrm{A}_{\min }=4$
Therefore, $\mu=0.8$
b. $A_{\text {max }}=A_{c}[1+\mu]$, implies that $A_{c}=8$ Volts

Problem 12

a. The AM wave
$\mathrm{s}(\mathrm{t})=\mathrm{A}_{\mathrm{c}}\left[1+\mathrm{k}_{\mathrm{a}} \mathrm{m}(\mathrm{t})\right] \cos \left(\omega_{\mathrm{c}} \mathrm{t}\right)$
for $\mathrm{m}=0.5, \mathrm{k}_{\mathrm{a}}=1 / 16$
Therefore, the AM wave is written as:
$s(t)=100[1-(6 / 16) \cos (20 \pi t)-(2 / 16) \cos (60 \pi t)] \cos 200 \pi t$
b. $\mathrm{s}(\mathrm{t})=100[1+(1 / 16) \mathrm{m}(\mathrm{t})] \cos (200 \pi \mathrm{t})-\mathrm{A}_{\mathrm{c}} \mathrm{k}_{\mathrm{a}} \mathrm{m}(\mathrm{t}) \sin (200 \pi \mathrm{t})$

